Monday, June 16, 2014

More on Engineering, and Engineers in History

As indicated else where across my blog, I hold an idealistic view of engineering. That idealistic view states that engineering only takes place at the frontiers of science and technology. I believe that this view is held out by history, and this started to be seriously distorted by the middle of the 1900's when the focus became on engineer as a licensed profession. Still I consider the WFEO Washington Accord, defining the engineer in terms of education, to support my view that engineering is at the frontier rather than concerned with established technologies. Most people with a B.Eng don't put the intent of  their education to use, and instead become guardians of safety assessing suitability of proposed adaptations and implementations of the established generic technologies: technicians with an abstract and esoteric box of tools and techniques.

I believe that people have grabbed the wrong end of the stick when they consider Telford, Navier and Stephenson to be engineer's simply because they designed  and built bridges. People were designing and building bridges long before they arrived on the scene, and people without the title engineer were designing and building bridges during their time.

The important factor is that they were operating at the limits of human knowledge and past experience, they were stepping into the unknown and the potential success of their endeavours was uncertain to them: however they weren't making wild guesses, they were progressing in a disciplined and learned manner. The past experience coming from the works of Vitruvius and the means of moving forward coming from Desaguliers Experimental Philosophy.

Telford was making use of materials and structural forms not previously used, He tested the materials and otherwise built smaller prototype versions of his bridges. These prototypes provided practice in the construction process, tested the concept and provided something with which to communicate the objective to workers on the larger projects.

Navier made use of untested mathematical theory which turned out to be a big mistake. But once he had validated the theory and calibrated it against reality it became a useful and productive theory for the design of all manner of beams.

Robert Stephenson along with William Fairbairn built prototype segments of a tubular bridge in a workshop and tested, and otherwise through trial and error resolved problems concerned with buckling of plates. With the services of Eaton Hodgkinson providing a mathematical assessment of the proposed bridge based on the then developing structural theories. Still a prototype bridge was built first before tackling the main project.

Today the technical science for establishing the suitability of a proposed bridge is well established. Whilst fitness-for-function is a matter of subjective judgement, technical science is available to assess whether the desired performance can be achieved from a given proposal. The uncertainty and risk of failure are low: but only so long as persons highly conversant in the technical science and the technical characteristics of the proposed variant of a generic technology are responsible for assessing and approving the proposed design.

When at the frontier, there is no expert to turn to, no literature with the answer, the answer has to be extracted from nature itself, and that requires trial and error experimentation. But experiments themselves can be dangerous. So a disciplined, rational and controlled approach needs to be taken to the experimentation. The trials and errors are not a result of wild guesses, but thoughtful consideration.

The ingenious contriver of civilisation asks questions and goes in search of answers. They do not sit on the authority of their formal education and approved license, for such is trite and inadequate for their role as pioneer pushing forward the frontier.

Society however is not asking for any frontiers of science and technology to be pushed forward. In the main they simply seek the proper implementation of the established technologies. With respect to these established technologies people have certain expectations, some reasonable others unreasonable and impractical. In terms of the reasonable, people do not expect: the wheels to fall off cars, they don't expect to fall through the floor of their house, they don't expect bridges to collapse when they drive over them, they don't expect ships to sink, or planes to fall out off the sky. These are established technologies and we can take reasonable steps to ensure they perform as expected.

Engineering science and Engineering made these technologies feasible in the first instance, they defined the generic class of technologies from which variants can be developed. The engineering is for all intents and purposes is over. Sure there are still frontiers associated with these technologies, but its a long journey through extensive literature before bump into the current frontier. Civil, industrial, mechanical, electrical, chemical these are all technologies not disciplines of engineering. Engineering is at a frontier, it is not yet classified, and when it is, then the engineering's over: that's the point of science and engineering. Mechatronics is not a new engineering discipline, it is a new area of technology.

Industry needs people who are conversant with the established technologies and who are able to adopt, adapt and apply these technologies to achieve specific objectives. This is not engineering it is technical design. Engineers the likes of Smeaton and Coulomb operated at the frontiers where they had no access to appropriate technical science, they developed the technical science and published papers and presented lecturers to share such knowledge. The published papers could be read by others and the theories contained within put to work. But most importantly such published papers can be referenced by others, they set a benchmark. For example no one should get buried in a trench because we have the technical science to design a technical solution to avoid collapse of the trench walls. If a trench wall collapses we can reference national standards, safety manuals and industry manuals and a variety of textbooks, reference manuals and journal articles. The collapse of a trench wall is largely an avoidable event, and the literature provides the means to avoid. There may be uncertainty in the characteristics of the materials and the quality of the workmanship but such uncertainty can be kept to a minimum. If there is a trench collapse we can identify that the persons involved failed to exercise adequate duty of care.

Information is being consolidated and organised and disseminated faster than ever before. It is important therefore that the available information is used to properly assess new implementations and adaptations of the established technologies.

Unfortunately there is also a problem of information overload which hinders getting anything done. Only the real world physical system is fully informed about itself. Anything else can only contain partial information, the importance of design is to make abstract and give consideration to the critical characteristics: not attempt to simulate a complete virtual reality due to inability to make decisions in the face of uncertainty.

Recommended Reading:
1) J.E.Gordon (1991), Structures, or why things don't fall down.Penguin
2) Jacques Heyman, (1999), The Science of Structural Engineering, Imperial College Press
3) Stephen P Timoshenko (1983), History of the Strength of Materials, Dover
4) S.C.Hollister (1966), Engineer: ingenious contriver of the instruments of civilization, Macmillan career book